Homological algebra of twisted quiver bundles

نویسندگان

  • Peter B. Gothen
  • Alastair D. King
چکیده

Several important cases of vector bundles with extra structure (such as Higgs bundles and triples) may be regarded as examples of twisted representations of a finite quiver in the category of sheaves of modules on a variety/manifold/ringed space. We show that the category of such representations is an abelian category with enough injectives by constructing an explicit injective resolution. Using this explicit resolution, we find a long exact sequence that computes the Ext groups in this new category in terms of the Ext groups in the old category. The quiver formulation is directly reflected in the form of the long exact sequence. We also show that under suitable circumstances, the Ext groups are isomorphic to certain hypercohomology groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homological algebra of quiver bundles

The category of representations of a finite quiver in the category of sheaves of modules on a ringed space is abelian. We show that this category has enough injectives by constructing an explicit injective resolution. From this resolution we deduce a long exact sequence relating the Ext groups in these two categories. We also show that under some hypotheses, the Ext groups are isomorphic to cer...

متن کامل

Homological Approach to the Hernandez-leclerc Construction and Quiver Varieties

In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver...

متن کامل

ar X iv : 1 50 2 . 06 01 5 v 1 [ m at h . R A ] 2 0 Fe b 20 15 m - KOSZUL ARTIN - SCHELTER REGULAR ALGEBRAS

This paper studies the homological determinants and Nakayama automorphisms of not-necessarily-noetherian m-Koszul twisted Calabi-Yau or, equivalently, m-Koszul Artin-Schelter regular, algebras. Dubois-Violette showed that such an algebra is isomorphic to a derivation quotient algebra D(w, i) for a unique-up-to-scalar-multiples twisted superpotential w. By definition, D(w, i) is the quotient of ...

متن کامل

Homological Dimension of Smash Product over Quasitriangular Weak Hopf Algebra

Let (H,R) be a quasitriangular weak Hopf algebra, and A a quantum commutative weak H-module algebra. We establish the relationship of homological dimensions between weak smash product algebra A#H and A under some conditions. As an application, we consider the case of twisted weak Hopf algebra. Mathematics Subject Classification (2010): 16T05

متن کامل

The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli

Methods of Harder and Narasimhan from the theory of moduli of vector bundles are applied to moduli of quiver representations. Using the Hall algebra approach to quantum groups, an analog of the Harder-Narasimhan recursion is constructed inside the quantized enveloping algebra of a KacMoody algebra. This leads to a canonical orthogonal system, the HN system, in this algebra. Using a resolution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005